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Abstract

Viability, ontogeny, and adaptivity have been widely dis-
cussed within the context of emergent individuality. This pa-
per provides an initial step towards a more formal treatment
of these concepts. A network of possible ontogenies is un-
covered by subjecting a model protocell to sequential pertur-
bations, and mapping the resulting structural configurations.
The analysis of this network reveals trends in how the pro-
tocell can move between configurations, how its morphology
changes, and how the role of the environment varies through-
out. Viability is defined as expected lifespan given an initial
configuration. This leads to two notions of adaptivity: a lo-
cal adaptivity that addresses how viability changes in plas-
tic transitions, and a global adaptivity that looks at longer-
term tendencies for increased viability. The mechanisms of
a minimal adaptive transition are analyzed, and it is shown
that these rely on distributed spatial processes rather than an
explicit regulatory mechanism.

Introduction
Biological individuals are a special class of physical systems
that counter the universal trend towards disintegration. In
any given moment, a physical system can be described by its
structural configuration — the spatial arrangement of com-
ponents from which it is constituted. The states and loca-
tions of these components unfold dynamically, and whereas
most configurations tend towards a uniform equilibrium, bi-
ological individuals are a unique subclass of physical sys-
tem that persist as individuals. The theory of autopoiesis
argues this viability comes from their closure of production;
as a result of their intrinsic dynamics and material exchange
with the environment, biological individuals produce and
distribute the materials needed to stabilize themselves [10].

From the perspective of an individual, an environment ap-
pears as a probability distribution over possible perturba-
tions. These perturbations, together with the individual’s
intrinsic dynamics, determine the individual’s subsequent
states. Thus, a perturbation can have one of three conse-
quences: the individual can be unaffected (a robust transi-
tion), it can be changed to a different viable configuration
(a plastic transition), or it can cross into the set of nonviable
configurations and disintegrate (a destructive transition).

An individual that remains viable for any length of time
experiences a sequence of perturbations that induce a corre-
sponding sequence of configurational changes. In this paper,
we refer to an unbroken trajectory through the set of viable
configurations as an ontogeny; when the trajectory crosses
the boundary of viability into a nonviable region, closure of
production is broken and the ontogeny ends. Different se-
quences of perturbations have the potential to induce differ-
ent ontogenies. If the set of possible perturbations is known,
one can in principle map the entire network of possible tran-
sitions that an individual can undergo.

The viability of any configuration in an ontogenic network
can be defined as the average number of perturbations it is
from disintegration, weighted by the probability of those
perturbations. If many perturbations are needed to destroy
a configuration, then it is highly viable; if few are needed,
then it has lower viability. Adaptivity can be defined as the
change in viability that follows plastic transitions. Taken
locally, adaptive transitions are plastic transitions in which
viability is increased, and maladaptive transitions are those
in which viability is reduced. A more global notion of adap-
tivity addresses whether there are trends towards increased
viability across possible ontogenies. This could be achieved
in a variety of ways, ranging from an explicit regulatory sub-
system [3; 6] to more emergent processes.

In this paper, the relationship between viability, ontogeny,
and adaptivity is investigated in the context of a model pro-
tocell that we recently proposed [1]. After reviewing the
model and describing the environment in which we place it,
the paper is organized as follows. First, we build upon a
framework for exploring ontogenies as a network structure
[4]. Applying this methodology reveals a rich complexity of
ontogenic structure, which we characterize through a com-
bination of graph-theoretic, morphology-based, and statisti-
cal measures. Second, viability is measured for all config-
urations across the ontogenic network, and increases in the
measure allow us to identify trends of adaptive change. Fi-
nally, the mechanisms of an adaptive transition are analyzed
in great detail.
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A model of emergent individuality
An essential feature of biological individuals is their emer-
gence from material components. To develop a theoretical
understanding of such systems, the models must also dis-
play an emergence of individuality in the sense that they
should exhibit metabolism-boundary co-construction.While
such emergence has been explored in systems with abstract
physics, such as the Game of Life [4], the model described
here moves towards a more realistic chemistry.

The spatial model of molecular concentration dynamics
considered here includes the diffusion, repulsion, chemi-
cal reactions, and decay of four molecular species: mem-
brane (M ), autocatalyst (A), food (F ), and water (W ). The
chemical reactions are such that A is produced from an au-
tocatalytic reaction between A and F , while M molecules
are produced by a reaction which consumes both A and F .
Both A and M also decay at a constant rate. Considered
individually, molecular concentrations diffuse across a 2-
dimensional lattice at a constant rate. However, the presence
of repulsion between molecular types breaks the traditional
symmetries. Based on the behavior of phospholipid bilayers,
the model implements anisotropic repulsion between mem-
brane moleculesM and bothA andW . This requires the in-
troduction of a fifth state variable, θ, which defines the orien-
tation of M and behaves with its own dynamic of alignment
with neighboring orientations. Here, we utilize a 40 × 40
lattice. Each lattice point has the five state variables, result-
ing in an 8000-dimensional coupled dynamical system. For
specific details of the model’s implementation, refer to [2].

The model displays two distinct types of equilibrium
points: the uniform equilibrium point with zero concen-
trations of both A and M , and stable inhomogeneities in
which positive concentrations of A and M are maintained.
The system is considered stable when the average tempo-
ral derivatives of A and M over the entire lattice satisfies
1
2

∑
m∈{A,M}

∑
xij
|ṁ(xij , tk)| < ε1 for all tk ∈ [t, t +

1000] for a sufficiently small ε1 = 0.05. Even though these
configurations are equilibrium points, they are still chemi-
cally active, with positive diffusion and reaction rates. It was
demonstrated that, in the later class of equilibrium points,M
was necessary to contain A at concentrations high enough
such that A could continuously construct both A and M
faster than their molecular decay. Thus, these configurations
exhibit metabolism-boundary co-construction [2].

Throughout this work, we study the ontogeny of a par-
ticular configuration we named SC (stable configuration),
shown on the left side of Figure 1. Due to θ′s initializa-
tion, SC has broken symmetries across both its horizontal
and vertical axes.

Environment as perturbation
From the individual’s point of view, an environment is a
probability distribution over a set of perturbations. We con-
sider an environment E , which consists of perturbations that

Figure 1: SC is the configuration on the left, which provides
the starting point for this paper’s exploration of ontogenic
networks. These diagrams show only the autocatalyst (red)
and membrane (blue) concentrations; food and water have
been removed for clarity. The 9 relative perturbation loca-
tions from E are denoted by yellow dots. The right figure
shows how locations are determined: a box encapsulates the
configuration, and focal points are centered on the lattice
cells according to intersections with the box’s lines.

robust transition

destructive transition

plastic transition

Figure 2: Three perturbations from environment E applied
to SC. The perturbations increase the membrane concentra-
tion with the same amplitude α = 2, as shown in yellow.
Following perturbation, the system undergoes transients that
stabilize in different attractor classes. The top branch shows
a robust transition that returns to the original configuration,
the middle branch shows a plastic transition that brings the
system to a different stable configuration, and the bottom
branch shows a destructive transition.

increase the concentration of either autocatalyst (A) or mem-
brane (M ) in the local neighborhoods of nine distinct fo-
cal points. These locations are specified relative to the
given configuration according to an algorithm that guaran-
tees placement on the configuration (Figure 1). The increase
in concentration is determined by a Gaussian function of the
form: G(xij) = αe−(|xij−xf |)2/2σ2

, where |xij −xf | is the
distance from the focal point xf to the given cell xij , α is
the magnitude of the function, and σ2 = 2.0 determines its
width. Four different magnitudes of α = [0.5, 1, 1.5, 2] are
used. In total, environment E consists of 72 possible pertur-
bations, each of which occurs with a uniform probability.

Once a perturbation is applied, it instantaneously dis-
places the system in state space. The system dynamics then
unfold towards a limit set, resulting in one of three classes of
possible outcomes: the uniform state, the same viable con-
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Figure 3: The ontogenic network ON captures the structure of all possible ontogenies starting at SC in environment E . All
configurations’ morphologies are shown as nodes while the death state is depicted as a black ellipse. Unsearched configurations
are denoted as gray nodes. Directed edges capture the transitions between configurations and are categorized as robust (green
self-loops), plastic (purple edges), and destructive (gray edges). Edge width represents the log-probability for each transition.

figuration, or a different viable configuration. Examples of
these three possibilities are illustrated in Figure 2.

To determine the identity of the resulting configura-
tion, C, a comparison metric is used within the 3200-
dimensional state space of M and A molecular concen-
trations (40x40 lattice sites for two molecule types). The
structural distance from each previously observed config-
uration, C ′, is found by taking the summed absolute dif-
ference between the configurations’ states d(C,C ′) =∑

m∈{A,M}
∑

xij
|mC(t, xij) − mC′(t, xij)|. If this sum

satisfies d(C,C ′) < ε2 with ε2 = 1.0, then we consider the
configurations equivalent.

Ontogenic networks
Typical environments are the source of repeated perturba-
tions which induce a sequence of changes to an individ-
ual’s structure. A single trajectory through the set of viable
configurations is an ontogeny. Different perturbations have
the potential to induce different plastic transitions, result-
ing in different ontogenic trajectories. The structure of all
possible ontogenies defines an ontogenic network, in which
the viable configurations and death state constitute the net-

work’s nodes, and each environmental perturbation is a di-
rected edge. Given a specific individual’s configuration in a
specific environment, the full ontogenic network is obtained
by exhaustively characterizing the configuration’s response
to every environmental perturbation. The process is then
repeated for all subsequent configurations until closure is
achieved (i.e. every transition results in either a previously
characterized configuration or death) [4].

The full ontogenic network formed by SC’s repeated ex-
posure to environment E is a multigraph with a set of reach-
able configurations as its nodes, each of which is the source
for 72 directed edges. Following each perturbation, the sys-
tem was given sufficient time to relax back to a stable condi-
tion before the next perturbation was applied. The network
was generated by a breadth-first search that exposed all con-
figurations to E as they were discovered. For this paper, the
search was terminated at a uniform depth of 16 from SC.
Configurations on the unsearched frontier are excluded from
this section’s analysis.

As a first step towards characterizing the structure of this
network, we focus on the relationships between viable con-
figurations. This suggests reducing the full ontogenic net-
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Figure 4: Two copies of ON (with the same layout as Figure
3). A) ON’s nodes are colored by cluster membership in In-
foMap communities. B) Strongly connected components are
shown as colored regions, with arrows indicating the direc-
tion of ontogenic change. Gray arrows indicate transitions
to the unsearched frontier.

work by combining edges according to equivalence classes
of transition outcome and considering the death state with
all destructive transitions separately from the rest of the net-
work. The resulting reduced ontogenic network (ON) is
shown in Figure 3. SC’s initial asymmetry is propagated
through all configurations in ON. In theory, mirrored initial
conditions can yield ontogenies identical to ON, but with
mirrored configurations.

Remarkably, this pairing of a simple configuration and en-
vironment generates an extensive ontogenic network, rich
with features. It has 154 stable configurations (represented
in the figure by the morphological structure of A and M
concentrations) as nodes while the death state is shown by
the surrounding black ellipse. The directed edges in ON re-
flect the probability for a transition to occur given a random
perturbation from the environment, with robust transitions
shown as green self-loops, plastic transitions shown as di-
rected purple edges between configurations, and destructive
transitions shown in gray.

A statistical analysis of ON reveals that configurations
vary widely in their response to perturbations from E . Ro-

bust transitions occur with a probability from the range
[0.0, 0.7917] and a mean of 0.4715, destructive transitions
occur with a probability from the range [0.0972, 0.9583] and
a mean of 0.3210, and plastic transitions, when they exist,
occur with a probability from the range [0.0139, 0.6528] and
a mean of 0.0481. The probability for a configuration to
plastically change is found as the sum over all of its plas-
tic transitions. For the configurations in ON, the probability
of a plastic change occurs in the range [0.0, 0.8194] with a
mean of 0.1682. It is interesting to note that all configu-
rations have a non-zero probability of both destruction and
survival in this environment. The out-degree distribution of
the network reflects the number of different plastic options
available to an ontogenic trajectory at each viable configu-
ration. This distribution is supported in the range [0, 9] with
a mean of 3.4935. Further, 30% of plastic transitions are bi-
directional; a number that indicates the network has many
more bi-directional edges than found in a random graph.
Indeed, this hypothesis is supported by a p-value � 0.001
when comparing ON to an ensemble of 1000 random graphs
with the same number of nodes and degree-distribution.

The graph theoretic structure of the viable configurations
in ON reflects several interesting characteristics of ontoge-
nies starting at configuration SC in environment E . First,
the number of viable configurations increases exponentially
with minimum path-length from SC. Second, ON has several
distinct clusters as highlighted by InfoMap network commu-
nity detection [12] (Figure 4A). These graph-theoretic clus-
ters reflect sets of configurations for which transitions are
more likely to remain within the set than leave it. Third,
there are several configurations which function as bottle-
necks for the network in the sense that ontogenies must pass
through those configurations to reach different areas of the
network. These configurations are determined by high val-
ues of betweenness centrality [11].

Strongly connected components (SCCs) found in the cur-
rent ON demonstrate irreversibility, branching, and attrac-
tors (Figure 4B). SCCs are sets of configuration in which
all configuration are mutually reachable [11]. There are 32
SCCs in ON. The presence of multiple SCCs indicates irre-
versibility — if the system moves from one SCC to another,
it cannot return. Branching is illustrated by diverging paths
from the SCCs. If an individual exits an SCC along one
branch, the alternatives can no longer be explored. Finally,
those SCCs with no outgoing connections are attractors in
the sense that if an ontogeny enters one of these sets, it is
guaranteed to remain there until death.

The analysis of ontogenies is further enriched by con-
sidering their morphologies — their unique spatial arrange-
ments of molecular concentrations. Recall that each config-
uration defines a point in the 3200-dimensional state space
of M and A molecular concentrations. Due to their high
dimensionality, these configurations are projected onto a 2-
dimensional manifold using the IsoMap manifold identifi-
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Figure 5: ON’s configurations, clustered according to mor-
phological similarity. Each point is a single configuration’s
morphological state projected onto a two-dimensional space
determined by two IsoMap components. Different colors
represent clusters detected by K-means clustering. An ex-
emplar configuration from each cluster illustrates the clus-
ter’s unique morphological features.

cation technique [13] including the whole set of other con-
figurations as neighbors. The resulting projection, shown in
Figure 5, had a reconstruction error of 1.8374. This pro-
jection is indicative of morphological clustering with many
points tightly grouped and relatively large distances between
the groups. Specific partitions of configurations can be iden-
tified using K-means clustering [9]. The resulting 8 clusters
are shown using different colors in Figure 5. Comparison of
the exemplar configurations from each cluster, identified by
their central position relative to the cluster’s mean, demon-
strates how the clusters vary along several qualitative dimen-
sions: the size of the configuration, the shape of the outer
membrane, the thickness of the outer membrane, and the
number and arrangement of internal membrane structures.

Combining the morphological similarity of viable con-
figurations with the transition network structure of ON re-
veals that plastic transitions are much more likely to oc-
cur between morphologically-similar configurations. A
Bayesian BEST test [8] between the distribution of all inter-
configuration distances using the Euclidean metric and the
distribution of configuration distances for those linked by a
plastic transition shows that the means of the distributions
are distinctly different, with an average difference of 3.25
in a 95% confidence interval of [3.16, 3.34]. There is also
a strong correspondence between the morphological clus-
ters and the InfoMap clusters previously identified in ON as
reflected by a normalized mutual information [5] value of

Figure 6: Environment E ′s 72 perturbations positioned ac-
cording to their probabilities of inducing a robust, destruc-
tive or plastic transition when applied to a random configura-
tion from ON. A) Perturbations are shown in barycentric co-
ordinates with markers illustrating their location, type, and
size. Arrows indicate the perturbation location on the outer
membrane and circles indicate perturbations to the central
position. Color indicates molecular type, either membrane
(blue) or autocatalyst (red). The perturbation’s magnitude is
shown by the darkness of the marker, with darker markers
indicating larger magnitudes. B) Histograms categorize the
probability of perturbations inducing a destructive, robust,
or plastic transition conditioned on (upper) the perturbations
type and magnitude or (lower) location.

0.6746 between the two clusterings. Therefore, as an on-
togeny unfolds and an individual falls into a graph-theoretic
cluster, it also tends to maintain its morphological features
by remaining within a corresponding morphological cluster.

In addition to characterizing attributes of the individual,
the full ontogenetic network can also be used to character-
ize the influence of the environment. To proceed in the case
of SC in E , we return to the full ontogenetic network and
classify each of the 72 perturbations by their probabilities of
inducing a robust, destructive or plastic transition when ap-
plied to a random configuration from the set of viable config-
urations in ON. The resulting classification is visualized in
Figure 6A according to barycentric coordinates for the three
probabilities. Here, each point (arrow or circle) represents
one of the 72 perturbations and the inverse distance between
the point and each vertex reflects the associated probability
of a transition in that equivalence class; a point directly on a
vertex denotes 100% of transitions falling in that category.
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Inspection of Figure 6A reveals that perturbations can
vary widely in their consequences. Notably, all perturba-
tions but one are destructive to at least one configuration,
but none of the 72 perturbations are destructive to all config-
urations. There is a gradated tradeoff between perturbations’
probabilities of inducing a robust transition versus inducing
a destructive transition. A small subset of perturbations are
associated with a large tendency to induce plastic transitions.
These results can be further subdivided according to the lo-
cation and magnitude of the applied perturbation as shown
in Figure 6B. In the first row of the subfigure, three normal-
ized histograms are shown which categorize perturbations
based on outcome, molecular type (membrane in blue, au-
tocatalyst in red), and magnitude (light to dark color). As
one would expect, robust transitions are primarily associ-
ated with small perturbations while destructive transitions
are associated with large perturbations. Plastic transitions
occur more frequently for perturbations to membrane con-
centrations than to autocatalyst concentrations, regardless
of magnitude. The second row of the subfigure illustrates
three additional histograms categorizing perturbations based
on outcome and location. These figures indicate that plastic
transitions result more often from perturbations to the cen-
ter and north-east locations while destructive transitions are
slightly biased to perturbations on the north-west.

Quantifying viability and adaptivity
Viability is a consequence of well-matched configurations
and environments. While some sequences of perturbations
applied to an individual yield long ontogenies, the same
individual exposed to different perturbations can result in
shorter-lived ontogenies. The viability of a configuration is
here defined as the expected lifespan over all of its possible
ontogenies [2]. Two notions of adaptivity follow from this
definition. Local adaptivity captures the change in viability
resulting from a plastic transition: an adaptive transition in-
creases a system’s viability, a maladaptive transition reduces
it. Global adaptivity is the general tendency for viability to
increase with longer ontogenies.

In order to calculate viability, dynamics on an ontogenic
network can be treated as a Markov chain. As a consequence
of this, death becomes an absorbing state and most config-
urations are transients. Finding the average number of tran-
sitions from each transient state to an absorbing state is a
well-studied problem [7], and gives our measure of viability.
The lower bound on this measure is 1, which occurs when
all perturbations bring the configuration to death within one
step. The possibility of an immortal configuration would
complicate this calculation by introducing infinite viability.

Applying these concepts to ON reveals a surprising abun-
dance of adaptive transitions (Figure 7). The network’s un-
searched frontier is assumed to transition to death, giving a
lower bound for the viability of all other configurations. A
wide range of viabilities is found, from 1.0028 to 4.8382

Figure 7: The network layout is the same as previous fig-
ures. Viability is shown by the darkness of the green nodes,
locally adaptive transitions are blue, and locally maladaptive
transitions are red.

with a mean of 2.1802, and 50% of the edges are locally
adaptive. Interestingly, the most viable configuration in ON
is not the most robust nor the one with the fewest destructive
transitions. Its viability is a consequence of its embedding
within the full ontogenic network.

Remarkably, ontogenies from SC also display global
adaptivity. A correlation analysis found that a configu-
ration’s graph-theoretic path length from SC is positively
correlated with its viability (r-value of 0.2882, p-value of
0.0003). This means that longer-lived ontogenies beginning
at SC will generally experience an increase in expected lifes-
pan. This global trend is configuration specific; each config-
uration in ON can have a different global adaptivity, and can
even be globally maladaptive.

Mechanisms of adaptivity
This model provides an excellent opportunity to investigate
the mechanisms underlying adaptivity. Previous formula-
tions of adaptivity have assumed an explicit regulatory sub-
system [3; 6]. This mechanism is designed to monitor the
system’s internal state relative to its boundary of viability
and use this information to bring the system to more viable
states. Models that implement this a priori assumption cover
only a subset of possible mechanisms of adaptivity. In con-
trast, this paper’s model demonstrates an emergent type of
adaptivity. Analyzing the processes involved here can pro-
vide insights not previously possible.

As a first step towards understanding the mechanisms of
emergent adaptivity, we examine a minimally adaptive sce-
nario embedded within ON. An adaptive transition requires
an environment of at least two perturbations, one which in-
creases viability, the other which reduces it. Taken to its
extreme, one perturbation would bring an initial configura-
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tion to death, and the other perturbation would bring it to a
second, immortal configuration. Multiple instances of this
exact scenario are found embedded within ON when envi-
ronment E is restricted to only two perturbations.

The chosen example of a minimally adaptive scenario is
shown in Figure 8A. The scenario begins with configuration
α, which is subjected to the two perturbations. The perturba-
tions are placed at different locations, but otherwise have the
same magnitude and are both to the membrane field. On the
top branch, α disintegrates, whereas on the bottom branch it
undergoes a plastic transition to configuration β. β is then
subjected to the same two perturbations, both of which result
in robust transitions. In this minimal context, β can survive
all perturbations, whereas α can survive only half of them.
The transition from α to β is therefore adaptive.

One way to analyze this scenario is to utilize dynami-
cal systems theory to characterize the system’s phase space
(Figure 8B). For visualization, the high-dimensional state
space is projected onto the top two principal components.
This makes trajectories appear to overlap, even though no
overlap is possible in the full dynamics. Configurations α,
β, and death are equilibrium points, each surrounded by a
basin of attraction. The real basins of attraction are not visu-
alizable, so faux basins of attraction are added to represent
a hypothetical division of phase space. The two classes of
perturbations (dashed red lines) instantaneously displace the
system within the state space. Whereas perturbations to α
move the system either to death’s basin of attraction or to
β′s basin of attraction, when applied to β they displace the
system within the same basin of attraction. Given this anal-
ysis, adaptivity is explained by the congruence between the
two configurations’ basins of attractions and the available
perturbations. The position of the equilibrium points, and
the shape of their basins are such that the perturbed states
fall outside of α′s basin, yet remain within β’s.

A more detailed investigation of mechanism needs to ad-
dress the specific physico-chemical interactions that take
place during this adaptive transition. A spatial analysis is
here approached by taking sequential snapshots of transient
configurations throughout the minimally adaptive scenario
and identifying the critical differences in their morphologies
(Figure 8C). First, we look at the adaptive transition from
α to β (Figure 8C(1)) and the divergence from α that oc-
curs throughout this transition (Figure 8C(2)). The sequence
begins with α, at which there is no difference. Next, the
perturbation displaces the membrane field, seen as a circu-
lar difference in the top right. Further down the sequence,
the membrane concentration spreads around the boundary.
While the north-east side of the configuration remains at in-
creased concentrations, the rest of the boundary is slightly
lower from its initial concentrations; this trait stabilizes at
β. The most obvious difference between stable configura-
tion β and α is a local increase in membrane concentration,
which makes β rounder and thickens its boundary (arrow I).

Figure 8: A minimally adaptive scenario and its analysis. A)
Configuration α branches off into two transients following
the application of two perturbations, one of which leads to
disintegration, and the other to a plastic transition resulting
in β. β is then perturbed by the same two perturbations and
recovers, proving it has adapted. B) The same sequence of
events shown in state space projected onto the top two prin-
cipal components. Faux basins of attraction (yellow, green,
gray regions) are added for explanatory purposes. Perturba-
tions are indicated by the two classes of dashed red lines.
Transients are shown as trajectories, with the destructive
transition as a black trajectory, the adaptive plastic transition
as a blue trajectory, and the robust transitions as green trajec-
tories. C) The scenario is analyzed as sequences of spatio-
temporal configurations. (1) The transition from α to β. (2)
The difference from α′s membrane field for the correspond-
ing sequence in (1); the figure is gray where membrane con-
centrations are the same as α, white where they are more
than α, and black where they are less than α. (3) Both α and
β′s responses to the second perturbation. (4) The difference
between membrane concentrations for the two sequences in
(3); where membrane concentrations are the same in these
sequences, the figure is gray, where the transient following
β has a higher membrane concentration, the figure is white,
and where it has lower concentration, the figure is black.
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Next, we examine how these morphological differences
allow β to survive a perturbation that α does not survive
(Figure 8C(3)). The difference between these two sequences
shows where the relevant divergences begin (Figure 8C(4)).
The sequence begins with the initial difference between α
and β. When the perturbations are applied to both configu-
rations, they do not appear in the difference plot because the
perturbations are spatially aligned. Later, the behavior be-
gins to diverge. The obvious difference between their initial
structures (arrow I) is not where the fatal divergence begins.
Instead, a region on the bottom of α (arrow II), which bulges
out and to the right, is the important feature. This growth
draws α′s membrane downward, reducing membrane con-
centration in the south-east boundary (arrow III). This opens
up a tear in α′s membrane, from which autocatalyst pours
out and ultimately brings about disintegration, whereas β’s
morphology allows it to stay intact and restabilize.

In contrast with previous formulations of adaptivity, we
see that no explicit regulatory mechanism is found during
this emergent adaptive transition. Adaptivity is the result of
distributed processes, and is better explained by their emer-
gent spatio-temporal dynamics. The analysis demonstrates
that local changes in chemical distributions, such as thicken-
ing membranes, have consequences for subsequent behavior.
In dynamical systems terms, adaptivity is determined by the
shape of configurations’ basins of attraction, and how in-
teractions with the environment move a system through the
phase space. A transition is adaptive if it brings the individ-
ual to a configuration with a more accommodating basin.

Discussion
This paper marks the first analysis of ontogeny in a spatial
chemical model that supports emergent individuality. The
ontogenic network is a unique consequence of the individ-
ual’s morphology paired with a particular environment. A
combination of statistical and graph-theoretic methods re-
vealed a rich structure, which includes clusters and bottle-
necks that constrain ontogenic change. The reachable mor-
phologies were found to cluster according to morphological
similarity, and we showed that as an individual falls into a
graph-theoretic cluster it tends to maintain its morphological
features. Two notions of adaptivity followed from the defi-
nition of viability as average expected lifespan; local adap-
tivity looks at the change in viability resulting from plas-
tic transitions, and global adaptivity looks at longer-term
increases in viability. There was an abundance of local
adaptivity within the ontogenies, and surprisingly, the model
also displayed global adaptivity. Finally, the mechanisms of
a minimally adaptive scenario were analyzed, demonstrat-
ing how adaptivity can be explained by distributed process
rather than explicit regulatory mechanisms.

The combination of this model and analytical techniques
provides a foundation for studying the emergence of via-
bility, ontogeny, and adaptivity in more biologically real-

istic systems. One natural extension along these lines re-
conceptualizes viable configurations as members of dynam-
ically richer limit sets. Another recognizes that environ-
ments also include sequential perturbations that occur on
similar or faster timescales compared to an individual’s in-
trinsic dynamics; these environments would keep the system
from stabilizing at a limit set and require a new, continuous
conceptualization of ontogenic change. Further, biological
individuals and environments are structurally coupled [10],
suggesting that an individual’s behavior could induce corre-
lations in its environment which affect future interactions.
All of these factors need to be considered in a generalization
of adaptivity to real-world biological individuals.
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